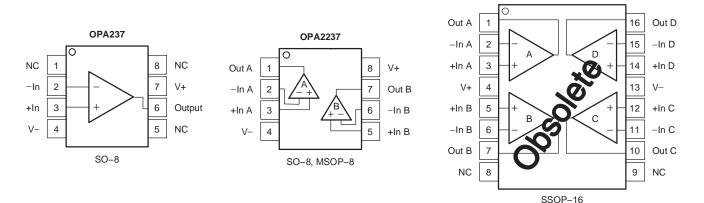

SINGLE-SUPPLY OPERATIONAL AMPLIFIERS MicroAmplifier[™] Series

FEATURES

- MICRO-SIZE, MINIATURE PACKAGES:
 - Single: SOT23-5, SO-8
 - Dual: MSOP-8, SO-8
 - Quad: SSOP-16 (Obsolete)
- LOW OFFSET VOLTAGE: 750μV max
- WIDE SUPPLY RANGE:
 - Single Supply: +2.7V to +36V
 - Dual Supply: ±1.35V to ±18V
- LOW QUIESCENT CURRENT: 350μV max
- WIDE BANDWIDTH: 1.5MHz

APPLICATIONS

- BATTERY-POWERED INSTRUMENTS
- PORTABLE DEVICES
- PCMCIA CARDS
- MEDICAL INSTRUMENTS
- TEST EQUIPMENT


DESCRIPTION

The OPA237 op amp family is one of Texas Instruments' MicroAmplifier[™] series of miniature products. In addition to small size, these devices feature low offset voltage, low quiescent current, low bias current, and a wide supply range. Single, dual, and quad versions have identical specifications for maximum design flexibility. They are ideal for single-supply, battery-operated, and space-limited applications, such as PCMCIA cards and other portable instruments.

OPA237 series op amps can operate from either single or dual supplies. When operated from a single supply, the input common-mode range extends below ground and the output can swing to within 10mV of ground. Dual and quad designs feature completely independent circuitry for lowest crosstalk and freedom from interaction.

Single, dual, and quad are offered in space-saving surface-mount packages. The single version is available in the ultra-miniature 5-lead SOT23-5 and SO-8 surface-mount. The dual version comes in a miniature MSOP-8 and SO-8 surface-mount. The quad version is obsolete. MSOP-8 has the same lead count as a SO-8 but half the size. The SOT23-5 is even smaller at one-fourth the size of an SO-8. All are specified for -40° C to $+85^{\circ}$ C operation. A macromodel is available for design analysis.

OPA4237

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MicroAmplifier is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, V+ to V	
Input Voltage	. (V–) –0.7V to (V+) +0.7V
Output Short-Circuit(2)	Continuous
Operating Temperature Range	
Storage Temperature Range	–55°C to +125°C
Junction Temperature Range	+150°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Short circuit to ground, one amplifier per package.

PACKAGE/ORDERING INFORMATION(1)

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRODUCT	PACKAGE-LEAD	PACKAGE DRAWING	PACKAGE MARKING
Single OPA237NA	SOT23-5	DBV	A37A
OPA237UA	SO-8	D	OPA237UA
Dual OPA2237EA	MSOP-8	DGK	B37A
OPA2237UA	SO-8	D	OPA2237UA
Quad ⁽²⁾ OPA4237UA	SSOP-16	DBQ	OPA4237UA

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(2) Quad version is obsolete.

ELECTRICAL CHARACTERISTICS: $V_S = +5V$

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. At $T_A = +25^{\circ}C$, $V_S = +5V$, $R_L = 10k\Omega$, connected to $V_S/2$, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage vs Temperature ⁽¹⁾ vs Power Supply (PSRR) Channel Separation (dual and quad)	V_{CM} = 2.5V Specified Temperature Range V_{S} = +2.7V to +36V		±250 ± 2 10 0.5	±750 ± 5 30	μV μ V/∘C μV/V μV/V
INPUT BIAS CURRENT Input Bias Current ⁽²⁾ Input Offset Current	V _{CM} = 2.5V V _{CM} = 2.5V		-10 ±0.5	-40 ±10	nA nA
NOISE Input Voltage Noise, f = 0.1 to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz			1 28 60		μV _{PP} nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio	$V_{CM} = -0.2V$ to 3.5V	-0.2 78	86	(V+) –1.5	V dB
INPUT IMPEDANCE Differential Common-Mode			5 • 10 ⁶ 4 5 • 10 ⁹ 2		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_{O} = 0.5V$ to 4V	80	88		dB
FREQUENCY RESPONSE					
Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01%	$\label{eq:G} \begin{array}{l} G=1\\ G=-1, 3V Step, C_L=100 p F\\ G=-1, 3V Step, C_L=100 p F \end{array}$		1.4 0.5 11 16		MHz V/μs μs μs
OUTPUT					
Voltage Output, Positive Negative Positive Negative Positive Negative Short-Circuit Current Capacitive Load Drive (stable operation)	$\begin{split} R_L &= 100 k\Omega \text{ to Ground} \\ R_L &= 100 k\Omega \text{ to Ground} \\ R_L &= 100 k\Omega \text{ to } 2.5 V \\ R_L &= 100 k\Omega \text{ to } 2.5 V \\ R_L &= 10 k\Omega \text{ to } 2.5 V \\ R_L &= 10 k\Omega \text{ to } 2.5 V \end{split}$	(V+) -1 0.01 (V+) -1 0.12 (V+) -1 0.5	(V+) -0.75 0.001 (V+) -0.75 0.04 (V+) -0.75 0.35 -10/+4 ical Characterist	ic Curves	V V V V V MA
		Gee Typ		ic Cuives	
POWER SUPPLY Specified Operating Voltage Operating Range Quiescent Current (per amplifier)		+2.7	+5 170	+36 350	V V μA
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance, θJA SOT23-5 MSOP-8 SSOP-16 (Obsolete)		-40 -55 -55	200 150 150	+85 +125 +125	°C °C °C W, °C/W °C/W
SO-8			150		°C/W

(1) Specified by wafer-level test to 95% confidence.

(2) Positive conventional current flows into the input terminals.

ELECTRICAL CHARACTERISTICS: $V_S = +2.7V$ Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. At $T_A = +25^{\circ}C$, $V_S = +2.7V$, $R_L = 10k\Omega$, connected to $V_S/2$, unless otherwise noted.

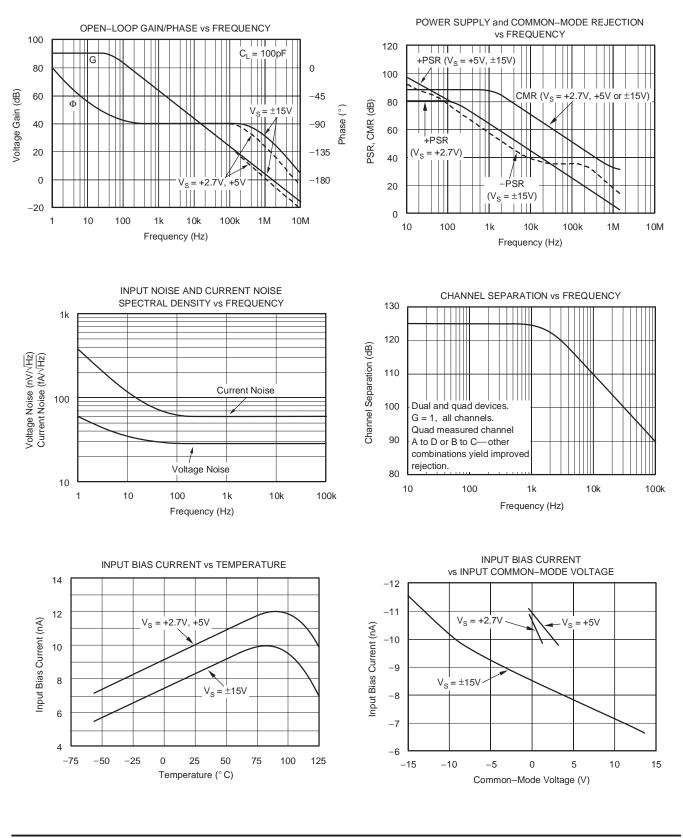
		OPA237UA, NA OPA2237UA, EA OPA4237UA				
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
OFFSET VOLTAGE Input Offset Voltage vs Temperature ⁽¹⁾ vs Power Supply (PSRR) Channel Separation (dual and quad)	$V_{CM} = 1V$ Specified Temperature Range $V_S = +2.7V \text{ to } +36V$		±250 ± 2 10 0.5	±750 ± 5 30	μV μ V/°C μV/V μV/V	
INPUT BIAS CURRENT Input Bias Current ⁽²⁾ Input Offset Current	$V_{CM} = 1V$ $V_{CM} = 1V$		-10 ±0.5	40 ±10	nA nA	
NOISE Input Voltage Noise, f = 0.1 to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz			1 28 60		μV _{PP} nV/√Hz fA/√Hz	
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio	$V_{CM} = -0.2V$ to 1.2V	-0.2 75	85	(V+) –1.5	V dB	
INPUT IMPEDANCE Differential Common-Mode			5 • 10 ⁶ 4 5 • 10 ⁹ 2		Ω pF Ω pF	
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_{O} = 0.5V$ to 1.7V	80	88		dB	
FREQUENCY RESPONSE						
Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01%	$\label{eq:G} \begin{array}{l} G=1\\ G=-1, \mbox{ 1V Step, } C_L=100\mbox{ pF}\\ G=-1, \mbox{ 1V Step, } C_L=100\mbox{ pF} \end{array}$		1.2 0.5 5 8		MHz V/μs μs μs	
OUTPUT Voltage Output, Positive Negative Positive Positive Negative Negative Short-Circuit Current Capacitive Load Drive (stable operation)	$\begin{split} R_L &= 100 k\Omega \text{ to Ground} \\ R_L &= 100 k\Omega \text{ to Ground} \\ R_L &= 100 k\Omega \text{ to } 1.35 \text{V} \\ R_L &= 100 k\Omega \text{ to } 1.35 \text{V} \\ R_L &= 10 k\Omega \text{ to } 1.35 \text{V} \\ R_L &= 10 k\Omega \text{ to } 1.35 \text{V} \end{split}$	(V+) −1 0.01 (V+) −1 0.06 (V+) −1 0.3 See Typi	(V+) -0.75 0.001 (V+) -0.75 0.02 (V+) -0.75 0.2 -5/+3.5 cal Characterist	ic Curves	V V V V V mA	
POWER SUPPLY Specified Operating Voltage Operating Range Quiescent Current (per amplifier)		+2.7	+2.7 160	+36 350	ν ν μΑ	
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance, θ _{JA} SOT23-5		-40 -55 -55	200	+85 +125 +125	°C °C °C	
MSOP-8 SSOP-16 (Obsolete) SO-8			150 150 150		°C/W °C/W °C/W	

Specified by wafer-level test to 95% confidence.
Positive conventional current flows into the input terminals.

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15V$

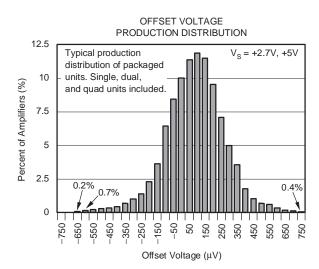
Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. At $T_A = +25^{\circ}C$, $V_S = \pm 15V$, $R_L = 10k\Omega$, connected to $V_S/2$, unless otherwise noted.

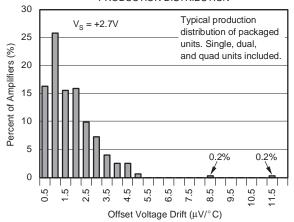
			OPA237UA, NA OPA2237UA, EA OPA4237UA				
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS		
OFFSET VOLTAGE Input Offset Voltage vs Temperature ⁽¹⁾ vs Power Supply (PSRR)	$V_{CM} = 0V$ Specified Temperature Range $V_S = \pm 1.35V \text{ to } \pm 18V$		±350 ± 2.5 10	±950 ± 7 30	μV μ V/°C μV/V		
Channel Separation (dual and quad)			0.5		μV/V		
INPUT BIAS CURRENT Input Bias Current ⁽²⁾ Input Offset Current	$V_{CM} = 0V$ $V_{CM} = 0V$		-8.5 ±0.5	-40 ±10	nA nA		
NOISE Input Voltage Noise, f = 0.1 to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz			1 28 60		µVpp nV/√Hz fA/√Hz		
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio	V _{CM} = -15V to 13.5V	(V–)–0.2 80	90	(V+) –1.5	V dB		
INPUT IMPEDANCE Differential Common-Mode			5 • 10 ⁶ 4 5 • 10 ⁹ 2		Ω pF Ω pF		
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_{O} = -14V$ to 13.8V	80	88		dB		
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01%	G = 1 G = -1, 10V Step, C _L = 100pF G = -1, 10V Step, C _L = 100pF		1.5 0.5 18 21		MHz V/μs μs μs		
OUTPUT Voltage Output, Positive Negative Positive Negative Short-Circuit Current Capacitive Load Drive (stable operation)	$R_{L} = 100k\Omega$ $R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 10k\Omega$	(V+) -1.2 (V-) +0.5 (V+) -1.2 (V-) +1 See Typi	(V+) −0.9 (V−) +0.3 (V+) −0.9 (V−) +0.85 −8/+4.5 cal Characterist	ic Curves	V V V W MA		
POWER SUPPLY Specified Operating Range Operating Range Quiescent Current (per amplifier)		±1.35	±15 ±200	±18 ±475	ν ν μΑ		
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance, θ _{JA} SOT23-5		-40 -55 -55	200	+85 +125 +125	⊃° ℃ ℃		
MSOP-8 SSOP-16 (Obsolete) SO-8			150 150 150		°C/W °C/W °C/W		

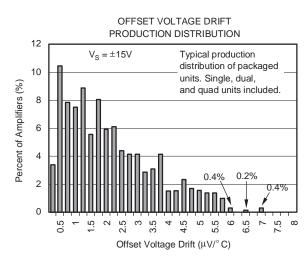

(1) Specified by wafer-level test to 95% confidence.

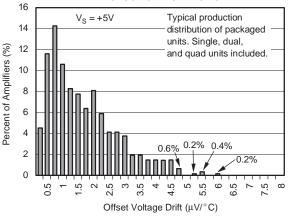
(2) Positive conventional current flows into the input terminals.

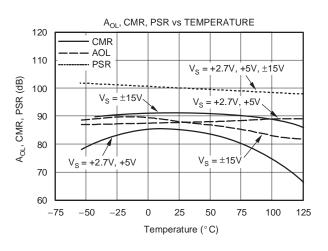
TYPICAL CHARACTERISTICS


At $T_A = +25^{\circ}C$ and $R_L = 10k\Omega$, unless otherwise noted.

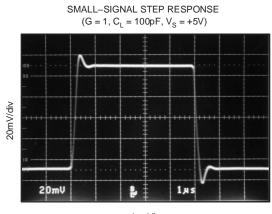

TYPICAL CHARACTERISTICS (Continued)

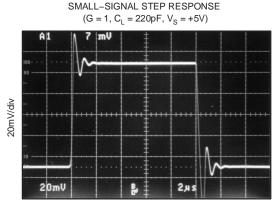

At $T_A = +25^{\circ}C$ and $R_L = 10k\Omega$, unless otherwise noted.


OFFSET VOLTAGE **PRODUCTION DISTRIBUTION** 9 Typical production $V_{S} = \pm 15V$ 8 distribution of packaged units. Single, dual, 7 Percent of Amplifiers (%) and quad units included. 6 5 4 3 2 0.1% 0.1% 1 *** ഫി l n n n 0 650 550 450 350 -50 50 150 250 350 550 650 750 850 950 250 150 950 850 750 Offset Voltage (µV)

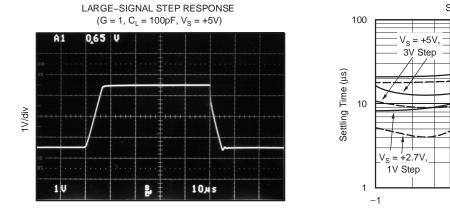

OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION

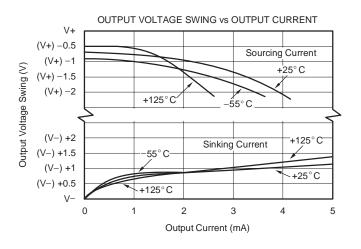
OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION

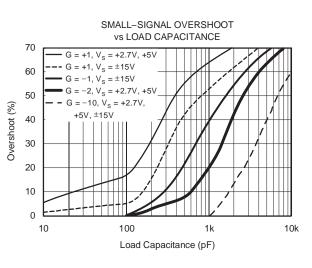




TYPICAL CHARACTERISTICS (Continued)

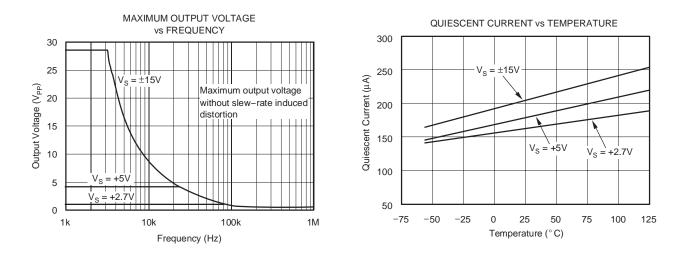

At $T_A = +25^{\circ}C$ and $R_L = 10k\Omega$, unless otherwise noted.

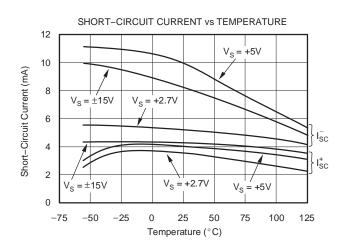

1µs/div



2µs/div

10µs/div




SETTLING TIME vs GAIN

TYPICAL CHARACTERISTICS (Continued)

At $T_A = +25^{\circ}C$ and $R_L = 10k\Omega$, unless otherwise noted.

TEXAS INSTRUMENTS www.ti.com

APPLICATION INFORMATION

OPA237 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. Power supply pins should be bypassed with 10nF ceramic capacitors.

OPERATING VOLTAGE

OPA237 series op amps operate from single (+2.7V to +36V) or dual (\pm 1.35V to \pm 18V) supplies with excellent performance. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in typical performance curves. Specifications are production tested with +2.7V, +5V, and \pm 15V supplies.

OUTPUT CURRENT AND STABILITY

OPA237 series op amps can drive large capacitive loads. However, under certain limited output conditions any op amp may become unstable. Figure 1 shows the region where the OPA237 has a potential for instability. These load conditions are rarely encountered, especially for single supply applications. For example, take the case when a +5V supply with a 10k Ω load to V_S/2 is used. OPA237 series op amps remain stable with capacitive loads up to 4,000pF, if sinking current and up to 10,000pF, if sourcing current. Furthermore, in single-supply applications where the load is connected to ground, the op amp is only sourcing current, and as shown Figure 1, can drive 10,000pF with output currents up to 1.5mA.

Figure 1. Stability-Capacitive Load vs Output Current

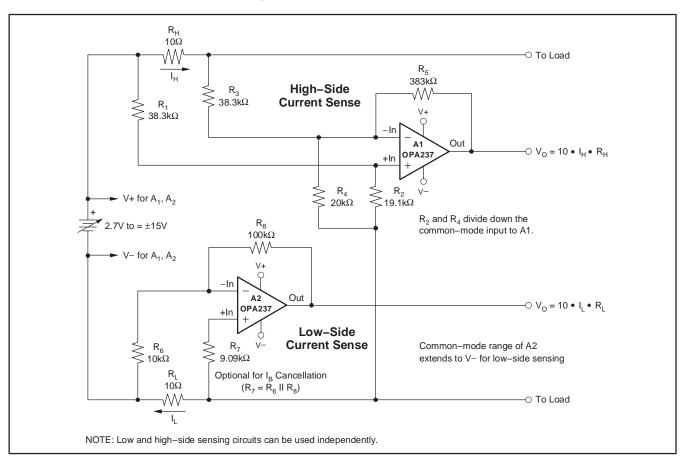


Figure 2. Low and High-Side Battery Current Sensing

31-Oct-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
OPA2237EA/250	ACTIVE	MSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA2237EA/250G4	ACTIVE	MSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA2237EA/2K5	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA2237EA/2K5G4	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA2237UA	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA2237UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA2237UA/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA2237UAE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA2378AIDCNR	PREVIEW	SOT-23	DCN	8	3000	TBD	Call TI	Call TI
OPA2378AIDCNT	PREVIEW	SOT-23	DCN	8	250	TBD	Call TI	Call TI
OPA237NA/250	ACTIVE	SOT-23	DBV	5	250	Pb-Free (RoHS)	CU NIPDAU	Level-3-260C-168 HR
OPA237NA/250E4	ACTIVE	SOT-23	DBV	5	250	Pb-Free (RoHS)	CU NIPDAU	Level-3-260C-168 HR
OPA237NA/3K	ACTIVE	SOT-23	DBV	5	3000	Pb-Free (RoHS)	CU NIPDAU	Level-3-260C-168 HR
OPA237NA/3KE4	ACTIVE	SOT-23	DBV	5	3000	Pb-Free (RoHS)	CU NIPDAU	Level-3-260C-168 HR
OPA237UA	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA237UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA237UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA237UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA4237UA/250	OBSOLETE	SSOP/ QSOP	DBQ	16		TBD	Call TI	Call TI
OPA4237UA/2K5	OBSOLETE	SSOP/ QSOP	DBQ	16		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

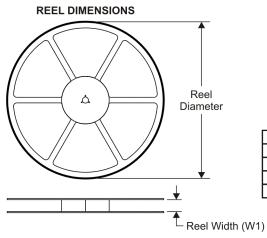
OBSOLETE: TI has discontinued the production of the device.

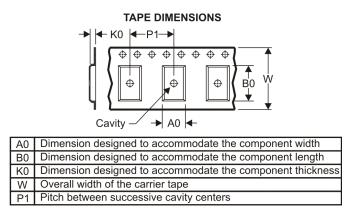
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements

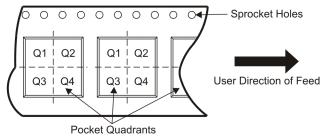
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

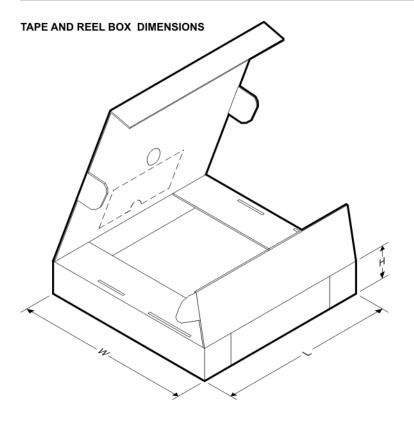

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

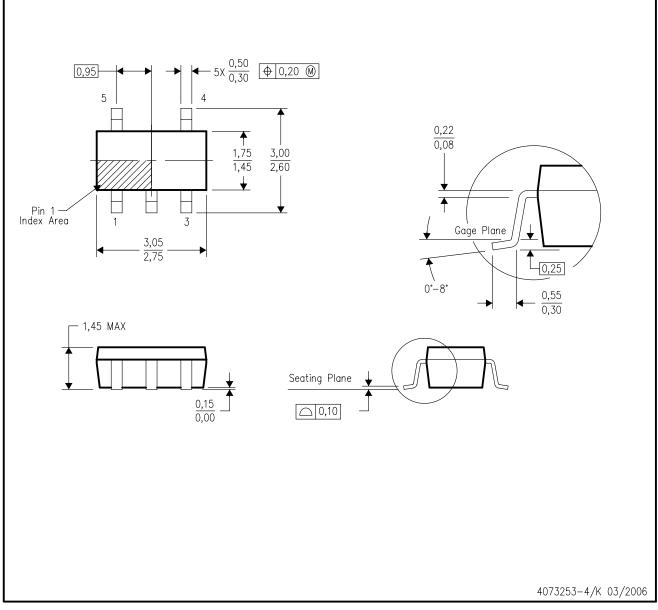
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2237EA/250	MSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2237EA/2K5	MSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2237UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA237NA/250	SOT-23	DBV	5	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
OPA237NA/3K	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
OPA237UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

14-Jun-2008



*All dimensions are nominal

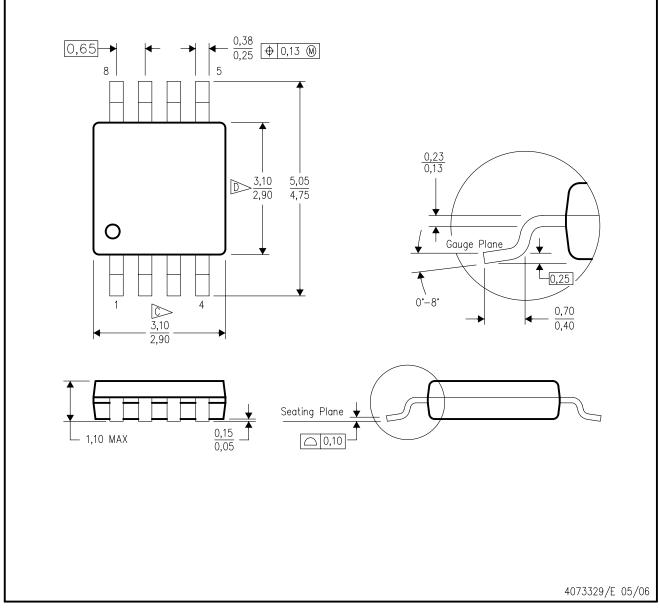
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2237EA/250	MSOP	DGK	8	250	190.5	212.7	31.8
OPA2237EA/2K5	MSOP	DGK	8	2500	346.0	346.0	29.0
OPA2237UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA237NA/250	SOT-23	DBV	5	250	214.0	199.0	55.0
OPA237NA/3K	SOT-23	DBV	5	3000	214.0	199.0	55.0
OPA237UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

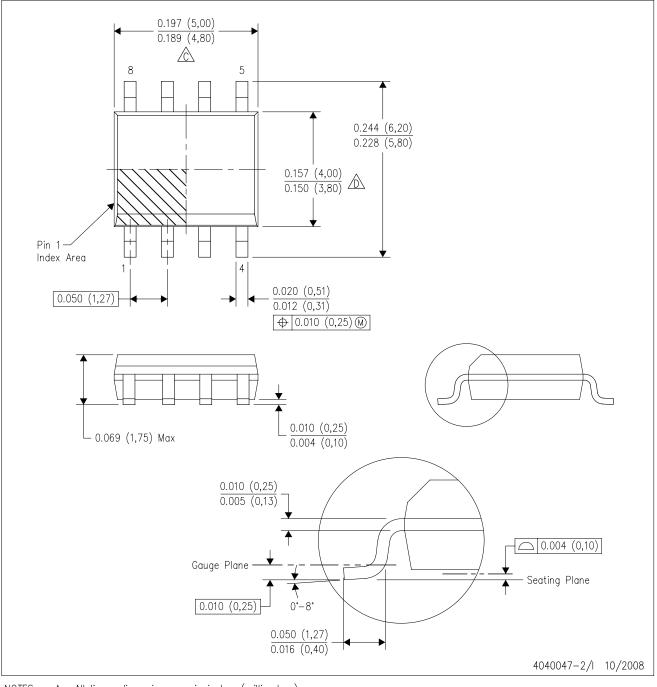
D. Falls within JEDEC MO-178 Variation AA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

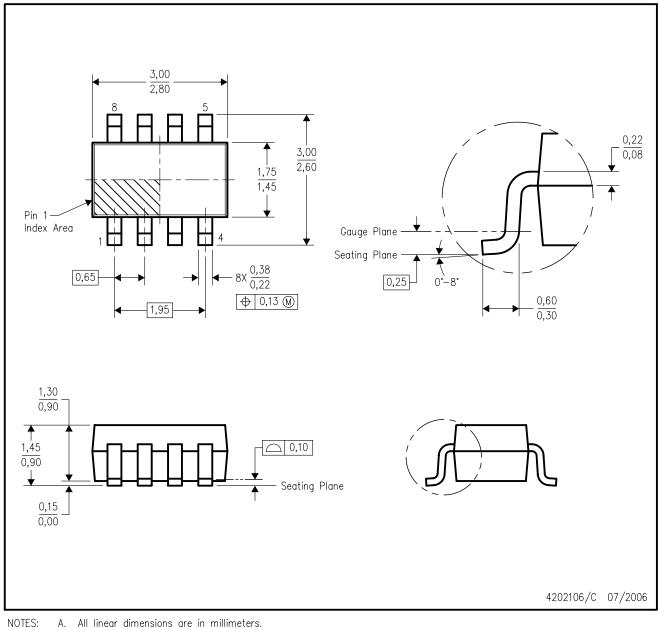
D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

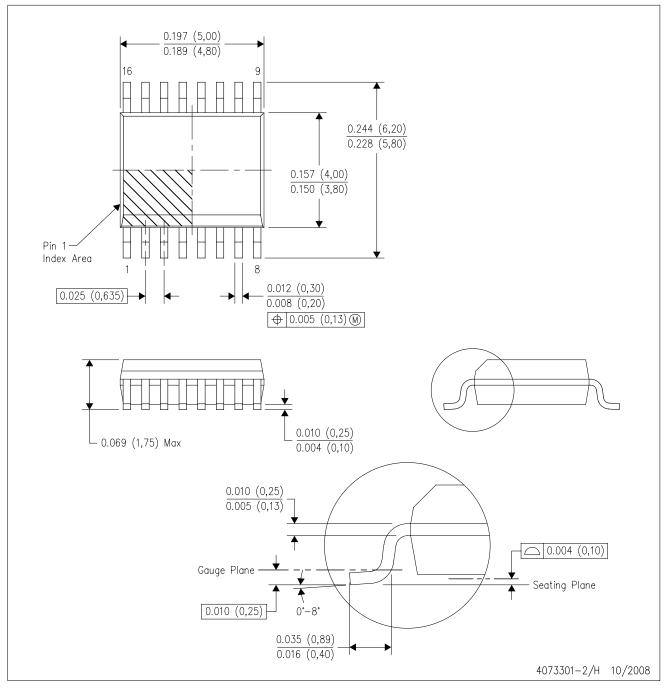
Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.


Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AA.

DCN (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)



- A. All linear dimensions are in millimeters.
 - Β. This drawing is subject to change without notice.
 - C. Package outline exclusive of mold flash, metal burr & dambar protrusion/intrusion.
 - D. Package outline inclusive of solder plating.
 - E. A visual index feature must be located within the Pin 1 index area.
 - F. Falls within JEDEC MO-178 Variation BA.

DBQ (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.

D. Falls within JEDEC MO-137 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated